Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 71: 105067, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33301902

RESUMO

In response to the need for reliable cellular models that reflect complex tumor microenvironmental properties, and enable more precise testing of anti-cancer therapeutics effects on humans, a co-culture platform for in-vitro model that enhances the physiology of breast cancer (BC) microenvironment is presented. A six well imaging plate wherein each macro-well contains several separate compartments was designed. Three-dimensional (3D) cancer spheroids are generated and cultured in the inner compartment which is embossed with an array of nano-liter micro-chambers made of hydrogel. Stromal cells are cultured in the outer chambers. The two cell types are cultured side-by-side, sharing a common space, thus enabling extra-cellular communication via secreted molecules. As proof of concept, a model of BC tumor microenvironment was recapitulated by co-cultivating 3D MCF7 spheroids in the presence of tumor-associated macrophages (TAMs). The presence of TAMs induced an aggressive phenotype by promoting spheroid growth, enhancing survivin expression levels and enabling invasive behavior. Moreover, TAMs influenced the response of BC spheroids to cytotoxic treatment as well as hormonal drug therapy, and enhanced the effects of nitric oxide donor. The platform enables time-lapse imaging and treatment without losing spatial location of the measured spheroids, thereby allowing measurements and analysis at individual-object resolution in an easy and efficient manner.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias da Mama/tratamento farmacológico , Técnicas de Cocultura , Doxorrubicina/farmacologia , Humanos , Hidrogéis , Células MCF-7 , Macrófagos/efeitos dos fármacos , Modelos Biológicos , Esferoides Celulares/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Tamoxifeno/farmacologia , Triazenos/farmacologia , Microambiente Tumoral , Células U937
2.
J Vis Exp ; (140)2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30417872

RESUMO

Cancer metastasis is known to cause 90% of cancer lethality. Metastasis is a multistage process which initiates with the penetration/invasion of tumor cells into neighboring tissue. Thus, invasion is a crucial step in metastasis, making the invasion process research and development of anti-metastatic drugs, highly significant. To address this demand, there is a need to develop 3D in vitro models which imitate the architecture of solid tumors and their microenvironment most closely to in vivo state on one hand, but at the same time be reproducible, robust and suitable for high yield and high content measurements. Currently, most invasion assays lean on sophisticated microfluidic technologies which are adequate for research but not for high volume drug screening. Other assays using plate-based devices with isolated individual spheroids in each well are material consuming and have low sample size per condition. The goal of the current protocol is to provide a simple and reproducible biomimetic 3D cell-based system for the analysis of invasion capacity in large populations of tumor spheroids. We developed a 3D model for invasion assay based on HMCA imaging plate for the research of tumor invasion and anti-metastatic drug discovery. This device enables the production of numerous uniform spheroids per well (high sample size per condition) surrounded by ECM components, while continuously and simultaneously observing and measuring the spheroids at single-element resolution for medium throughput screening of anti-metastatic drugs. This platform is presented here by the production of HeLa and MCF7 spheroids for exemplifying single cell and collective invasion. We compare the influence of the ECM component hyaluronic acid (HA) on the invasive capacity of collagen surrounding HeLa spheroids. Finally, we introduce Fisetin (invasion inhibitor) to HeLa spheroids and nitric oxide (NO) (invasion activator) to MCF7 spheroids. The results are analyzed by in-house software which enables semi-automatic, simple and fast analysis which facilitates multi-parameter examination.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Células HeLa , Humanos , Invasividade Neoplásica , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...